2,263 research outputs found

    On the linear term correction for needlets/wavelets non-Gaussianity estimators

    Full text link
    We derive the linear correction term for needlet and wavelet estimators of the bispectrum and the non-linearity parameter fNL on cosmic microwave background radiation data. We show that on masked WMAP-like data with anisotropic noise, the error bars improve by 10-20% and almost reach the optimal error bars obtained with the KSW estimator (Komatsu et al 2005). In the limit of full-sky and isotropic noise, this term vanishes. We apply needlet and wavelet estimators to the WMAP 7-year data and obtain our best estimate fNL=37.5 \pm 21.8.Comment: 10 pages, submitted to Ap

    CMB lensing and primordial squeezed non-Gaussianity

    Full text link
    Squeezed primordial non-Gaussianity can strongly constrain early-universe physics, but it can only be observed on the CMB after it has been gravitationally lensed. We give a new simple non-perturbative prescription for accurately calculating the effect of lensing on any squeezed primordial bispectrum shape, and test it with simulations. We give the generalization to polarization bispectra, and discuss the effect of lensing on the trispectrum. We explain why neglecting the lensing smoothing effect does not significantly bias estimators of local primordial non-Gaussianity, even though the change in shape can be >~10%. We also show how tau_NL trispectrum estimators can be well approximated by much simpler CMB temperature modulation estimators, and hence that there is potentially a ~10-30% bias due to very large-scale lensing modes, depending on the range of modulation scales included. Including dipole sky modulations can halve the tau_NL error bar if kinematic effects can be subtracted using known properties of the CMB temperature dipole. Lensing effects on the g_NL trispectrum are small compared to the error bar. In appendices we give the general result for lensing of any primordial bispectrum, and show how any full-sky squeezed bispectrum can be decomposed into orthogonal modes of distinct angular dependence.Comment: 22 pages, 6 figures; minor edits to match published versio

    SCIENCE BY DOING STAGE 4 (2016 TO 2018)

    Full text link

    Optimisation of a Multi-Gravity Separator with Novel Modifications for the Recovery of Ferberite

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Tungsten is considered by the European Union as a critical raw material for future development due to its expected demand and scarcity of resource within Europe. It is therefore, critical to optimize European tungsten operations and maximise recoveries. The role of enhanced gravity/centrifugal concentrators in recovering tungsten from ultra-fine fractions should form an important part of this aim. Reported herein are the results of investigations to improve efficiency of Wolf Minerals’ Draklends mine, a major European tungsten mine, by recovering saleable material from a magnetic waste stream of a low-intensity magnetic separator using an enhanced gravity concentrator. The mine hosts wolframite and ferberite as the main tungsten bearing mineral species. A Mozley multi-gravity separator (MGS) C-900 was selected as it is suited to exploiting small variations in mineral density to affect a separation. Working with a current manufacturer, a novel scraping blade system was tested. To assess the MGS in a statistically valid manner, a response surface methodology was followed to determine optimal test conditions. The test programme showed that the most important parameters were drum speed and wash water rate. Under optimal conditions the model predicted that 40% of the tungsten could be recovered above the required grade of 43% WO3.This work is part of the OptimOre project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 642201. Authors are thankful to Wolf Minerals for providing material for experimentation and to Gravity Mining Ltd. for support in undertaking experiments and providing the opportunity to test the modified low profile blades

    A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization

    Get PDF
    This paper reviews the use of non-intrusive optical infrared sensing for gas–liquid flow characterisation in pipes. The application of signal analysis techniques to infrared-derived temporal signal outputs enables the objective determination of flow characteristics such as flow regimes, phase fractions and total pressure drops. Key considerations for improving the performance of infrared sensors are discussed. These include global and local measurements, ray divergence, effects of ambient light and temperature variations. Most experimental studies have reported consistent and excellent results for flow regime identifications and phase fraction estimation but with a few validating total pressures drop from correlations and direct pressure measurements. Other gaps in research were highlighted; these include the use of pipes sizes greater than 0.005m for experimentation under high superficial velocities conditions greater than 10 m/s. The capabilities of infrared sensing as a standalone measurement for flow metering were considered a possibility via an inferential approach for phase volumetric rates. More so, the derived infrared sensing flow characteristics could be combined with available pressure–volume–temperature correlations in estimating mass flow rates of each phase. As a future development, a conceptual modification to surface installations using a transparent opaque coupling is suggested to overcome the accessibility limitation of infrared light penetration for opaque pipes

    The Trans-Pacific Partnership Agreement: Looking Ahead to the Next Steps

    Get PDF
    Pressure has been building for the conclusion of the 12-country Trans-Pacific Partnership (TPP) negotiations. Getting the deal done is important, but the TPP is not just another free trade agreement (FTA). It represents the chance to set a trade agenda for the future across a wide range of topics for countries throughout the Asia-Pacific region. This means that the agreement should not be settled in haste. More importantly, it also means that key decisions need to be reached about broader issues related to the institutional structure of the TPP. These decisions must be made now, before the deal is closed, on issues such as how to create the TPP as a living agreement, the formation of a TPP Secretariat, and the clarification of entry conditions for future members such as the People’s Republic of China (PRC). These choices must be made deliberately and carefully even while officials are struggling with reaching closure on the most highly sensitive issues still remaining in the agreement. It will not be easy, but wise decisions are necessary now to ensure the long-term success of the TPP

    Creating Positive Learning Environments in Early Childhood Using Teacher-Generated Prosocial Lessons

    Get PDF
    A primary motivation for people to behave as they do is the need to belong socially to a group and to have relevance. A positive learning environment for young students is created when students are recognized and accepted by their peers and their teachers, and studies reveal that in such environments, students perform better academically and tend to have fewer behavioral issues. These environments may also act as a buffer against school dropout rates. This study examined whether teaching prosocial lessons to first-grade students in the southeastern United States would create positive learning environments for children who otherwise may not be recognized and accepted by their peers and also examined the relationship of teacher evaluations of observable classroom behaviors by their students with student recognition by peers. This study confirms the relevance of prosocial lessons in the creation of positive learning environments for young students
    • …
    corecore